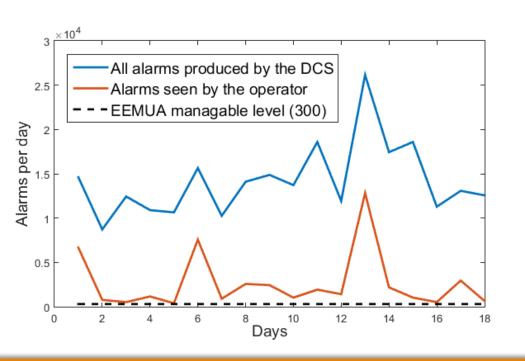
AlarmSolutions – Al-based alarm management

Dörgő Gyula¹, Ruppert Tamás^{2,3}, Abonyi János^{2,3}

¹Rabbit Miner Kft.

²University of Pannonia


³MTA-PE Lendület Complex Systems Monitoring Research

Group

dorgo@rabbitminerlab.com

Do we need operators?

09 November 2021

On-line

They still interact...

Alarm performance metrics based on 30	< days of o	lata	
Metric	Target Value		
	Acceptable	Max.	
Annunciated alarms per hour per operator console	~6	~12	
Annunciated alarms per 10 minutes per operator console	~1	~2	
Percentage of 10-minute periods containing more than 10 alarms	~<1 %		
Maximum number of alarms in a 10-minute period			
Percentage of time the alarm system is in a flood condition	~<1 %		
Percentage of the top 10 most frequent alarms to the overall alarm load	~<1 % to maximum		
Quantity of chattering and fleeting alarms	Zero		
Stale (standing) alarms	Less than present of day		
Annunciated priority distribution 3 priorities: (Low-Medium-High)	80 – 15 – 5 %		

"Self-driving" operation

Tasks

Exploring the alarm messages

Exploring the alarm-control action connections

Validation of the control actions

Alarm load is decreased

Recommendation system

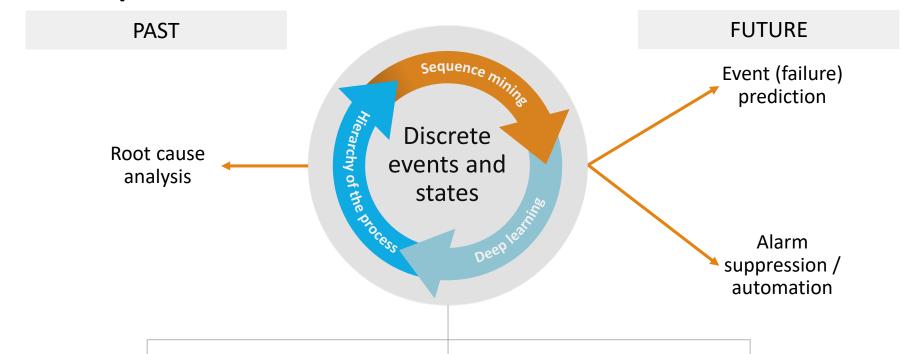
Fully automatized (and optimal) control

XX

Alarm & Event Log Databases

From	То	Production Unit	Unit	Tag	Event Type	Description
10/24 /2018 16:02	10/24/ 2018 16:04	Distillation	Main column	Head temp.	Alarm	High alarm
10/24 /2018 16:02	10/24/ 2018 16:04	Distillation	Main column	Cond. cooling	Operator action	Open

Millions of data points


Data (process) mining, machine (deep) learning...

Something useful?

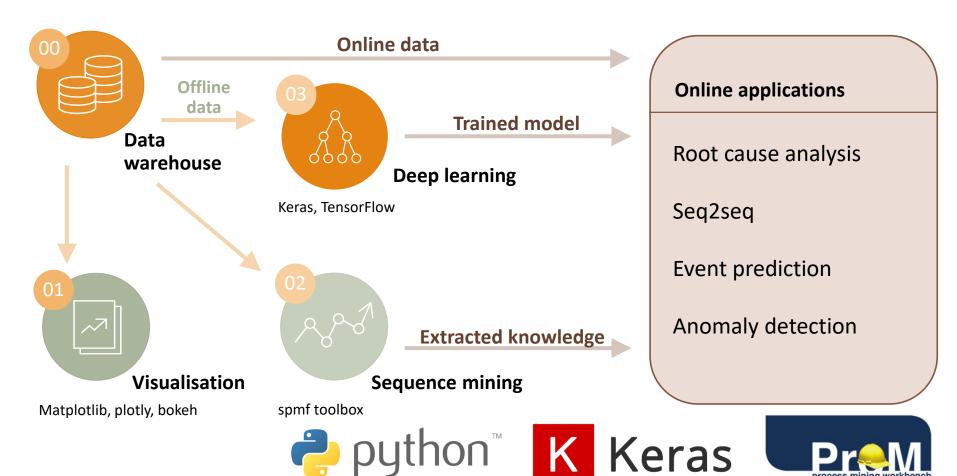
Concept

Discrete events

- · State of the process
- Frequent sequence mining for prediction
- Alarm operator interactions

Deep learning

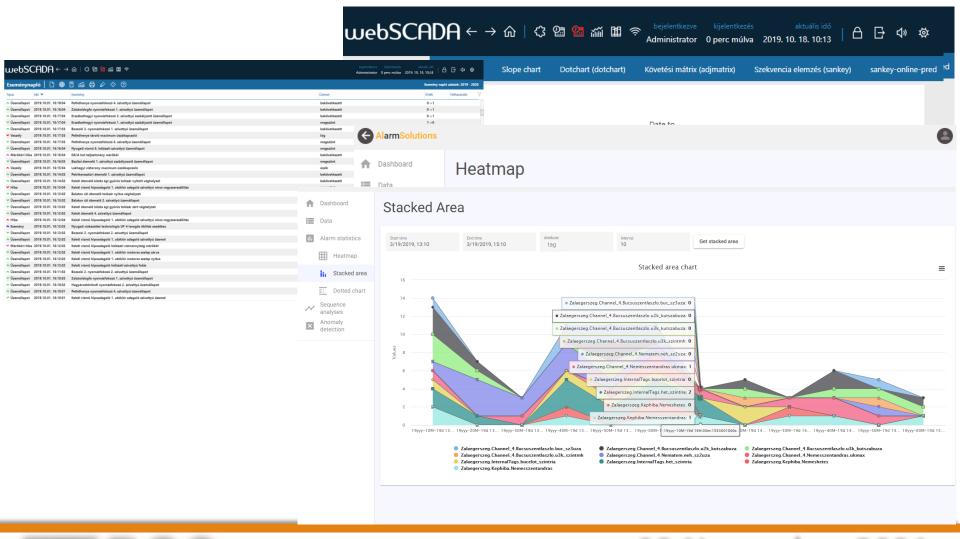
- · Root cause analysis
- Event prediction
- Visualisation for interpretability


Hierarchy of the process

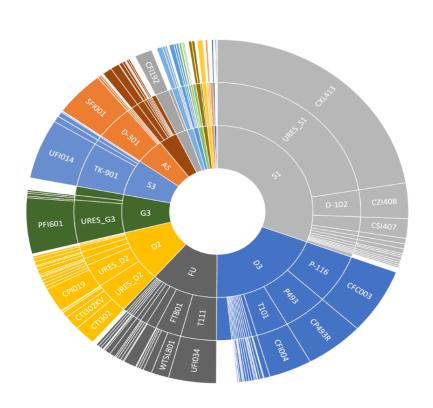
- Structural process models
- · Helps the freq. seq. mining
- Monitoring the spillover of malfunctions

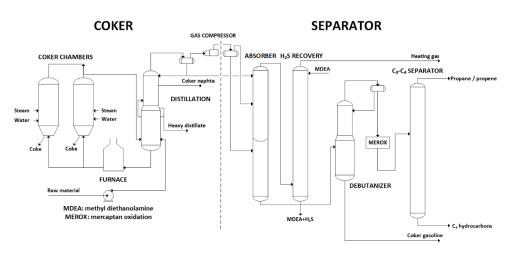
The method and the framework

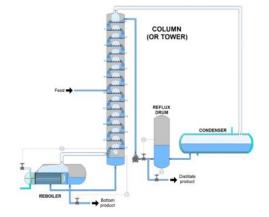
Open source machine learning tools are applicable in the process industry



Where is the problem?


Visualisation of alarms




Distribution of alarms

Sequence mining

Alarm messages

Fouling

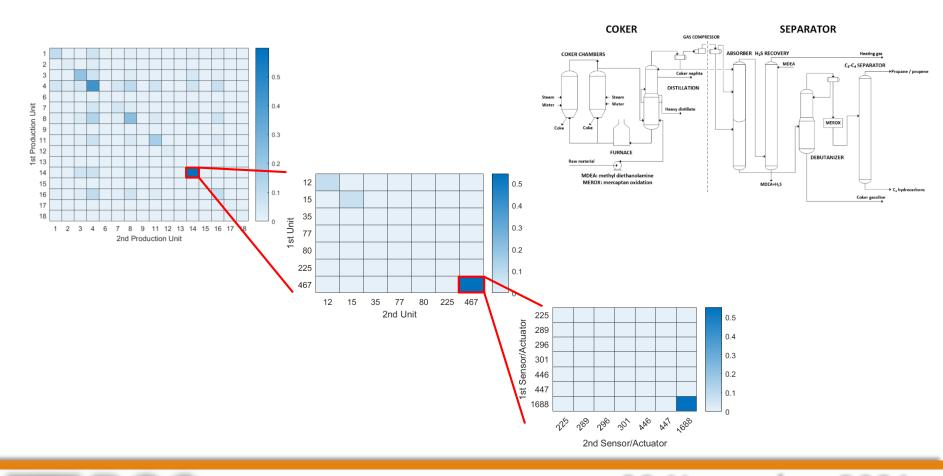
$$F_{reflux}^{L} \Rightarrow p_{condenser}^{H} \Rightarrow T_{column \ top}^{H} \Rightarrow T_{condenser}^{H} \Rightarrow A_{product}^{L}$$

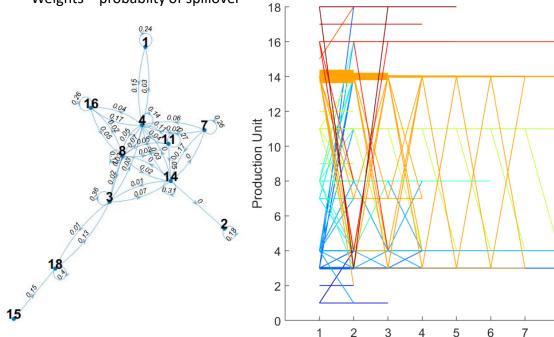
Operator actions

 $Flow_{pump}^{H} \Rightarrow Q_{cooling}^{H} \Rightarrow Flow_{inflow}^{L} \Rightarrow Bypass$

Causal relations?

Techniques


- · Frequent sequence mining
- Deep learning


Sequences of hierarchical levels

Spillover effect of malfunctions

- Nodes production units
- Edges direction
- Weights probablity of spillover

- x length, y prod unit
- Polyline sequence
- Color start of alarms
- Thickness frequency

ID	unit	unitname
1	AS	DCU AMINE REGENERALO
2	D1	DCU RAW MATERIAL SYSTEM
3	D2	DCU H-101 FURNACE
4	D3	DCU COKE TANKS
5	D4	DCU MAIN FRACTIONATOR
6	D5	DCU LCGO HCGO PRODUCT SYST.
7	D6	DCU BLOWDOWN SYST.
8	FU	FLARE SYSTEM
9	G1	DCU MOIST. GAS SYSTEM
10	G2	DCU HEATING GAS LINE
11	G3	DCU C3/C4 SEPARATION
12	G4	DCU C3/C3= SEPARATION
13	G5	DCU BENZIN SEPARATION
14	S1	DCU UTILITY SYSTEMS 1
15	S2	DCU UTILITY SYSTEMS 2
16	S3	DCU UTILITY SYSTEMS 3
17	S4	DCU UTILITY SYSTEMS 4
18	AC	ADVANCED CONTROL
19	C3	CLAUS UNIT

09 November 2021

10

Sequence length

11

On-line

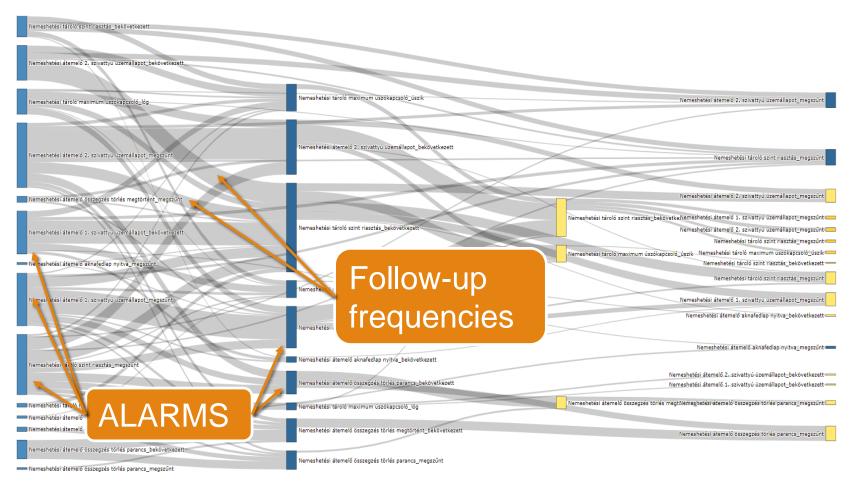
Prediction of alarms

Alarm prediction

Online occurring sequence:

Confidence-based prediction High variability!

Edit distancebased comparison



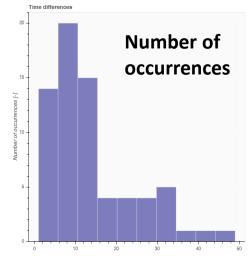
Prediction of the event with the highest confidence

Frequent sequence DB

Visualising the sequences – water system

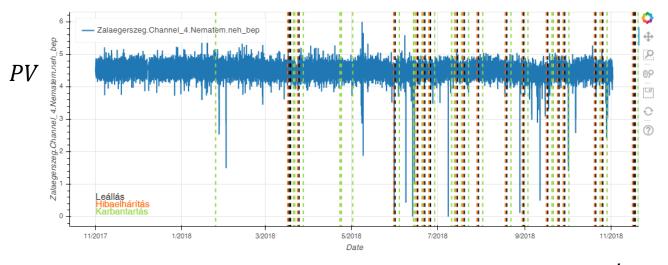
Sankey diagram - Proportional to support values (occurrences)

Maintenance monitoring



Maintenance monitoring




Predictive maintenance - How to schedule maintenances?

Time differences between maintenances

time

Conclusions – act now!

• The number of sensors is increasing!

- The number of operators is decreasing!
- The monitored data is unused acquired, stored, managed...

Costs?

alarms.hu

Szolgáltatásaink

Alarm Management

Hirek

Gy.I.K. Fejlesztők

ők Kapcso

Szolgáltatásaink

Alarm rendszerek vizsgálata

Statisztikai adatvizualizáció – online megoldások a alarm rendszer állapotának időszakos felmérésére. Gyökérokok keresése és jövőbeli vészjelzések predikciója.

Anomália detekció

Gépi tanulási modellek segítségével számítjuk a folyamat erőforrásigényét és eltérések esetén figyelmeztetést adunk ki.

Prediktív karbantartás

Gépi tanulási alapú karbantartáselőrejelzés.

alarms.hu

Rabbit Miner – The process systems engineers

- Optimization
- Process systems engineering
- Process/Data mining
- Data science applications
- Industry 4.0 solutions

TOP 50 in BIG BANG Startup competition, University of California, Davis USA

Rabbit Miner

Data-driven process development

Root cause analyses

Smart monitoring system

Decision support based on process simulation

Contact:

Web: www.rabbitminerlab.com

E-mail: miner@rabbitminerlab.com

Thank You for your attention!

